Red Rose Senior Secondary School

 Class: XII (Board Paper)

 Class: XII (Board Paper)
 Subject: MATHS

Chapter: 2 (INVERSE TRIGONOMETRIC FUNCTION)

Q.1: Using Principal value, evaluate the following
(1) [2008, 2011]

$$
\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)
$$

Q.2: -Prove the following
(4) [2008]

$$
\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4}
$$

OR
Solve for \mathbf{x}
$\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$
Q.3: Write the principal value of $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$
(1) [2009]
Q.4: Prove the following
(4) [2009]
$\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, \quad \mathrm{x} \in\left(0, \frac{\pi}{4}\right)$

OR

Solve for the x

$$
2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)
$$

Q.5: -Find the value of $\sin ^{-1}\left(\sin \frac{4 \pi}{5}\right)$
(1) [2010]
Q.6: -Prove the following
(4) [2010]

$$
\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)
$$

Prove the following

$$
\cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} x\right)\right\}\right]=\sqrt{\frac{1+x^{2}}{2+x^{2}}}
$$

Q.7: -Prove the
(4) [2011]
$\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4}$
Q.8: -Find the Principal value of $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$
(1) [2012]
Q.9: -Prove the following
(4) [2012]
$\cos ^{-1}\left(\frac{12}{13}\right)+\sin ^{-1}\left(\frac{3}{5}\right)=\sin ^{-1}\left(\frac{56}{65}\right)$
Q.10: -Write the Principal value of $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$
(1) [2013]
Q.12: -Write the value of $\tan ^{-1}\left[2 \sin \left(2 \cos ^{-1} \frac{\sqrt{3}}{2}\right)\right]$
(1) [2013]

Q.13: -Show that

(4) [2013]
$\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}$

OR

Solve the following equation
$\cos \left(\tan ^{-1} x\right)=\sin \left(\cot ^{-1} \frac{3}{4}\right)$
Q.14: -If $\tan ^{-1} x+\tan ^{-1} y=\frac{\pi}{4} \quad, x y<1$, then write the value of $x+y+x y$
(1) [2014]
Q.15: -Prove the following
(4) [2014]

$$
\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x, \quad \frac{-1}{\sqrt{2}} \leq x \leq 1
$$

OR
If $\tan ^{-1}\left(\frac{x-2}{x-4}\right)+\tan ^{-1}\left(\frac{x+2}{x+4}\right)=\frac{\pi}{4}$, find the value of x

$$
\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1} \frac{8}{31}
$$

OR

$$
\cot ^{-1}\left(\frac{x y+1}{x-y}\right)+\cot ^{-1}\left(\frac{y z+1}{y-z}\right)+\cot ^{-1}\left(\frac{z x+1}{z-x}\right)=0 \quad(0<x y, y x, z x<1)
$$

Q.17: -Prove the following

(4) [2015, Comptt.]
$2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\sin ^{-1}\left(\frac{31}{25 \sqrt{2}}\right)$
OR
Solve for $\mathrm{x}: \tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} \mathrm{x}, \mathrm{x}>0$
Q.18: -If $\cos ^{-1} \frac{x}{a}+\cos ^{-1} \frac{y}{b}=\propto$, prove that
(4) [2016]

$$
\frac{x^{2}}{a^{2}}-2 \frac{x y}{a b} \cos \propto+\frac{y^{2}}{b^{2}}=\sin ^{2} \propto
$$

OR

Solve for equation $x: \sin ^{-1} x+\sin ^{-1}(1-x)=\cos ^{-1} x$
Q.19: If $\tan ^{-1}\left(\frac{x-3}{x-4}\right)+\tan ^{-1}\left(\frac{x+3}{x+4}\right)=\frac{\pi}{4}$, find the value of x .
(4) [2017]
Q.20:Find the real solutions of the equation $\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x,(x>0)$
(4) 2017 compp.
Q.21: find the value of $\tan ^{-1} \sqrt{3}-\cot ^{-1} \sqrt{-3}$. (1) 2018
Q.22:prove that: $3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right) . x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
(2) 2018
Q.23. Find the value of $\operatorname{Sin}\left(\cos ^{-1} \frac{4}{5} \tan ^{-1} \frac{2}{3}\right)$.
(4) 2019
Q.24.Solve for $\mathrm{x}: \tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1}\left(\frac{8}{31}\right)$.
(4) 2019

